
Fierz transformations

Fierz identities are often useful in quantum field theory calculations. They are connected to
reordering of field operators in a contact four-particle interaction. The basic task is: given four
complex fields ψ1,2,3,4, which carry a (spacetime or internal) index, let us consider an interaction

(ψ1Aψ2)(ψ3Bψ4). (1)

The indices of the spinors are suppressed. The same interaction can be expressed in a different
way as (ψ

1
Mψ4)(ψ3

Nψ2). How are the matrices M,N related to the matrices A,B? The
obvious answer is

AijBkl = ±MilNkj, (2)

where the plus and minus signs apply to bosonic and fermionic field operators, respectively.
However, it is usually inconvenient to use the matrix elements explicitly and the matrices
A,B,M,N are often expressed in a suitable basis.

General Fierz identity

Denoting the vector space of the spinors as R, let as assume that we know a basis in the matrix
space R⊗R; we will call it Γa. The scalar product of basis matrices gives rise to a metric,1

Tr(ΓaΓb) = gab,

which may be used to raise and lower indices by2 Γa =
∑

b g
abΓb, as usual. Every matrix M can

be expanded in this basis as

M =
∑

a

MaΓa, where Ma = Tr(MΓa).

This leads immediately to the completeness relation,

∑

a

(Γa)ij(Γ
a)kl = δilδjk, (3)

which is the basis for the derivation of all Fierz identities.

The above introduced matrices A,B,M,N are accordingly written as

AijBkl =
∑

a,b

AaBb(Γa)ij(Γb)kl, MijNkl =
∑

a,b

MaN b(Γa)ij(Γb)kl.

1In fact, for general complex matrices we should Hermitian conjugate one of the matrices in the trace to get

a well-defined scalar product. Therefore, all our conclusions will hold without further assumptions in case the

Γas are Hermitian. Otherwise, we need to suppose at least that gab is invertible. This is indeed the case in all

applications.
2Here and in the following, all sums over indices will be indicated explicitly.
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The task to find the relation (2) between them is therefore equivalent to finding the relation
between (Γa)ij(Γb)kl and (Γa)il(Γb)kj. This is in general given by a linear combination

(Γa)ij(Γb)kl =
∑

c,d

C cd
ab (Γc)il(Γd)kj. (4)

Multiplying by (Γe)li(Γf)jk, we infer immediately

Cabcd = Tr(ΓaΓdΓbΓc). (5)

Equations (4) and (5) represent the most general Fierz rearrangement formula. However, in
practice one does not usually need to calculate the coefficients Cabcd for all combinations of
indices. Thanks to symmetry there are typically just a few independent ones.

Symmetry constraints

The space of spinors R furnishes an irreducible representation of a symmetry group, under
which the interaction Lagrangian is required to be invariant. This is most easily accomplished
in two consecutive steps. First the product representation R⊗R is decomposed into irreducible
representations of the symmetry group using the set of Clebsch–Gordan coefficients. For two
spinors ψ, χ in the same representation, the set of bilinears

ψΓA
a χ, a = 1, . . . , dimA,

form a basis of the irreducible representation A that lies in the decomposition of R ⊗ R.
For any selected representation A we can form a unique invariant of the symmetry group,3

(ψ1Γ
A
a ψ2)(ψ3Γ

Aaψ4).

We therefore need not rearrange the products of all pairs of two individual basis matrices, but
rather the sum,

∑

a ΓA
a ⊗ΓAa, over all matrices in a given irreducible representation. The Fierz

transformation analogous to the general formula (4) will then read
∑

a

(ΓA
a )ij(Γ

Aa)kl =
∑

B

CAB

∑

b

(ΓB
b )il(Γ

Bb)kj, (6)

where the Fierz coefficients now depend only on the representations in question. Summing
Eq. (4) over all a = b in a given representation and realizing that by symmetry considerations,
C a d

a c can only be nonzero for c = d, we find
∑

a

(ΓA
a )ij(Γ

Aa)kl =
∑

B

∑

a,b

C ab
a b (Γ

B
b )il(Γ

Bb)kj,

and from (5) then

CAB =
∑

a

C ab
a b =

∑

a

Tr(ΓA
a ΓB

b ΓAaΓBb). (7)

3The situation would become slightly more complicated in case the decomposition of R⊗R contained more

equivalent irreducible representations. For the sake of simplicity, we neglect this possibility here.



Properties of Fierz coefficients

[1] By multiplying Eq. (6) with ΓC
c,jk and using the orthogonality condition in the form

Tr(ΓA
a ΓB

b ) = δABgab, (8)

we derive a very useful formula

∑

a

ΓA
a ΓB

b ΓAa = CABΓB
b , (9)

which is often more convenient to evaluate the coefficients CAB than the definition (7).

[2] Another distinguishing property of the Fierz transformation is that performing it twice, we
get back to the original interaction, that is, the Fierz transformation is equal to its inverse. In
terms of the matrix of coefficients CAB, this can be seen by applying Eq. (6) to itself,

∑

a

(ΓA
a )ij(Γ

Aa)kl =
∑

B

CAB

∑

b

(ΓB
b )il(Γ

Bb)kj =
∑

B

CAB

∑

C

CBC

∑

c

(ΓC
c )ij(Γ

Cc)kl,

∑

B

CABCBC = δAC . (10)

[3] In practice the representation R often is a representation of a direct product of groups,
corresponding to different quantum numbers such as spin, flavor, or color. We therefore need to
know how to perform the Fierz transformation with respect to several indices. Let us denote the
basis of matrices in the product representation A⊗A′ as ΓAA′

aa′ ≡ ΓA
a ⊗ΓA′

a′ . Applying repeatedly
Eq. (9), we obtain

∑

aa′

ΓAA′

aa′ ΓBB′

bb′ ΓAA′aa′

=
∑

aa′

(ΓA
a ΓB

b ΓAa) ⊗ (ΓA′

a′ ΓB′

b′ Γ
A′a′

) =

=
(

∑

a

ΓA
a ΓB

b ΓAa
)

⊗
(

∑

a′

ΓA′

a′ ΓB′

b′ Γ
A′a′

)

= CABCA′B′ΓB
b ⊗ ΓB′

b′ = CABCA′B′ΓBB′

bb′ ,

and consequently
CAA′,BB′ = CABCA′B′.

This is a great simplification which tells us that the Fierz transformation can be performed on
each index separately.

[4] Summing Eq. (7) over b, we get a result invariant under the exchange A ↔ B, which implies
a nice reciprocity relation

CAB dimB = CBA dimA. (11)

[5] The representation R⊗R always contains the unit representation, I, and the corresponding
Clebsch–Gordan coefficients are conveniently defined by the unit matrix, ΓI = 11. Assuming



that all other basis matrices are chosen orthogonal to 11, i.e. traceless, we find ΓI = 11/Tr 11 =
11/ dimR. Substituting A = I in (9) then leads to

CIA =
1

dimR
, CAI =

dimA

dimR
, (12)

the second relation following immediately from (11).

Examples

[1] su(N) algebra

In this case, R will be the fundamental representation of su(N) with the generators Ta normal-
ized by Tr(TaTb) = ξδab. The representation R ⊗ R decomposes into the sum of the adjoint
representation T , with ΓT

a = Ta, and the unit representation I, with ΓI = 11. Note that the
normalization of 11, given by gII = N , in general differs from the normalization of Ta! With the
help of equations (7) and (11) we easily deduce

CII =
1

N
, CIT =

1

N
, CT I =

N2 − 1

N
.

The same result is an immediate consequence of Eq. (12). The last missing Fierz coefficient, CT T ,
follows most easily from (10): CT T = −1/N . We can now summarize the Fierz transformations
for su(N) in the conventional way, without using raised indices,

(11)ij(11)kl =
1

N
(11)il(11)kj +

1

ξ

∑

a

(Ta)il(Ta)kj,

∑

a

(Ta)ij(Ta)kl = ξ
N2 − 1

N2
(11)il(11)kj −

1

N

∑

a

(Ta)il(Ta)kj.

(13)

From here, or directly from Eq. (9), we then immediately obtain another useful identity,

∑

a

TaTbTa = −
ξ

N
Tb.

Equations (13) were derived for the fundamental representation of su(N). Even for higher rep-
resentations our general formulas can still yield some (restricted) information. Let us therefore
consider the su(N) generators TR

a in an arbitrary representation R. From the group-theoretic
point of view, they define the Clebsch–Gordan coefficients for the adjoint representation T in
the decomposition of the direct product R⊗R. Their norm is usually denoted as C(R), that
is, Tr(TR

a T
R
b ) = C(R)δab. Eq. (12) gives CT I = (N2 − 1)/ dimR. Applying Eq. (9) to B = I

then results in the conventional quadratic Casimir invariant, expressed as

∑

a

TR
a T

R
a = C2(R)11R, where C2(R) = C(R)

N2 − 1

dimR
.



[2] Dirac algebra

Proceeding in the same manner one can derive the Fierz identities for an arbitrary matrix alge-
bra. Here we quote some results for the algebra of Dirac matrices, without a detailed derivation,
which is straightforward, though a bit tedious. The standard Lorentz-covariant basis of 4 × 4
matrices is created from the scalar, vector, tensor, axial-vector, and pseudoscalar combinations
of Dirac γ-matrices, {11, γµ, σµν , γµγ5, iγ5}, where we use the conventions σµν = i

2
[γµ, γν ] and

γ5 = iγ0γ1γ2γ3. In many physical applications, the Lorentz symmetry is nevertheless broken
by the presence of a dense medium down to mere rotation symmetry. One therefore needs to
work with the basis of rotation-covariant matrices, that is, {11, γ0, γ

a, σa0, σab, γ0γ5, γ
aγ5, iγ5}.

The indices a, b now run from one to three. The resulting Fierz identities for rotation-invariant
bilinears are summarized in Fig. 1. The first matrix gives the Fierz coefficients defined by (6),
while the second matrix correspond to the Fierz transformation to the particle–particle channel,
discussed below.

Fierz transformation in the particle–particle channel

Of the four fields in the expression (1), two transform in the representation R and two in its
complex conjugate R. In the above two-step construction we created invariants of a given
symmetry from the product representations (R ⊗R) and (R ⊗R). The two possible ways to
compose R⊗R gave rise to the Fierz rearrangement identity (6).

However, we can also construct an invariant by first composing (R⊗R) and (R⊗R), and then
combining those. We will for simplicity refer to this rearrangement as the particle–particle one,
for obvious reasons. The product representation R⊗R naturally has a different basis than ΓA

a ;
we will denote the corresponding matrices as ΞA

a . The new Fierz transformation will therefore
be defined analogously to (6) as

∑

a

(ΓA
a )ij(Γ

Aa)kl =
∑

B

DAB

∑

b

(ΞB
b )ik(Ξ

Bb
)lj. (14)

The matrices Ξ, forming the basis of R⊗R, are most generally defined by (ψΞχT )† = χT Ξψ.
Note that we will not derive the Fierz transformation to the particle–particle channel in the
most general case, analogously to Eq. (4). The generalization is obvious, but of little practical
utility.

The basis matrices ΞA
a will be assumed to be normalized similarly to (8),

Tr(ΞA
a Ξ

B

b ) = δABhab,

and the metric hab will again be used to raise and lower indices. Analogously to Eqs. (7) and
(9) we derive the identities

DAB =
∑

a

Tr
[

ΓA
a ΞB

b (ΓAa)T Ξ
Bb]

, (15)



∑

a

ΓA
a ΞB

b (ΓAa)T = DABΞB
b . (16)

The coefficients CAB and DAB arise from rearrangement of the same matrices. It is therefore
not surprising that they are related to each other. To see this, let us apply the identity (6) to
the left-hand side of Eq. (16),

∑

a

[

ΓA
a ΞB

b (ΓAa)T
]

ij
=

∑

a,k,l

(ΓA
a )ik(Γ

Aa)jl(Ξ
B
b )kl =

∑

C

CAC

∑

c,k,l

(ΓC
c )il(Γ

Cc)jk(Ξ
B
b )kl =

=
∑

C

CAC

∑

c

[

ΓC
c (Ξ

B
b )T (ΓCc)T

]

ij
.

Being a basis of the representation R ⊗ R, the matrices ΞB
b are always either symmetric or

antisymmetric, that is, (ΞB
b )T = ηBΞB

b , where the sign ηB = ± depends only on the irreducible
representation B. Applying Eq. (16) to the first and last expression above, we obtain the relation

DAB = ηB
∑

C

CACDCB. (17)

Setting A to the unit representation I, we obtain a useful special case

DIA =
1

dimR
, 1 = ηB

∑

A

DAB. (18)

The second identity follows from (12). Although the relations (17) and (18) only constrain
the coefficients DAB, in some special cases they may actually be sufficient to determine DAB

completely.

su(N) algebra

The product R⊗R of two fundamental representations of su(N) decomposes into two irreducible
representations, the symmetric and antisymmetric tensors, S and A. We will denote the corre-
sponding basis matrices respectively as Sa and Aa. Note that Aa are simply the antisymmetric
Ta matrices, while Sa are the symmetric Ta matrices together with the unit matrix, normalized
to have the same norm ξ, that is, 11

√

ξ/N . Now the first identity in (18) immediately yields
DIS = DIA = 1/N . Given that ηS = 1 and ηA = −1, the second identity then implies

DT S =
N − 1

N
, DT A = −

N + 1

N
.

We can therefore summarize the Fierz identities analogous to (13),

(11)ij(11)kl =
1

ξ

∑

a

(Sa)ik(Sa)lj +
1

ξ

∑

a

(Aa)ik(Aa)lj,

∑

a

(Ta)ij(Ta)kl =
N − 1

N

∑

a

(Sa)ik(Sa)lj −
N + 1

N

∑

a

(Aa)ik(Aa)lj.



Particle–particle channel for (pseudo)real representations

Often, the representation R is (pseudo)real, i.e., it is equivalent to its complex conjugate.
Then the matrices ΞA

a can be directly related to ΓA
a and the coefficients DAB to CAB. Let us

assume that the equivalence is provided by the unitary matrix Q, that is, ψ transforms in the

same way as Qψ
T
. Then the natural choice for the matrices ΞA

a is ΞA
a = ΓA

a Q, and accordingly

Ξ
A

a = QΓA
a . (We tacitly assume Γ

A

a = ΓA
a , which can always be ensured by a suitable definition.)

(Anti)symmetry of the matrices ΞA
a , encoded in the sign ηA, then implies

(ΓA
a )T = ηA(QT )−1ΓA

a Q.

According to the general theory of Lie algebra representations, the matrix Q itself is either
symmetric or antisymmetric. In fact, it is symmetric if the representation R is real, and anti-
symmetric if R is pseudoreal. We shall therefore write generally QT = ηQQ. Then

(ΓA
a )T = ηQηAQ

−1ΓA
a Q.

The coefficients DAB now follow from Eq. (15),

DAB =
∑

a

Tr
[

ΓA
a ΞB

b (ΓAa)T Ξ
Bb]

= ηAηQ

∑

a

Tr
[

ΓA
a ΓB

b QQ
−1ΓAaQQΓBb

]

.

This already looks almost like the expression (7) for CAB, were it not for the matrix prod-
uct QQ. However, this must actually be proportional to the unit matrix. To see this, note

that since ψ′ = Qψ
T

transforms in the same way as ψ, ψ
′
ψ′ must be a group invariant. An

easy manipulation shows that ψ
′
ψ′ = ψTQQψ

T
= ±ψQQψ, the ± sign referring to bosons or

fermions. The invariance of the last expression requires that QQ commutes with all matrices of
the representation R, hence by Schur’s lemma must be proportional to the unit matrix as long
as the representation R is irreducible. Let us write QQ = η11, where η is a complex unit since
Q is unitary. We then immediately obtain the simple final result

DAB = ηAηQηCAB. (19)

Specifically for the algebra of Dirac γ-matrices, Q is the charge conjugation matrix. In the
standard Dirac representation we find ηQ = η = −1, the coefficients DAB are thus related to
CAB simply by the sign, defining the (anti)symmetry of the representation A. The values of all
Fierz coefficients are summarized in Fig. 1.
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Figure 1: Fierz transformation of rotation-invariant Dirac bilinears into the particle–antiparticle and particle–particle chan-
nels.




